Python OpenCV简单几何变换

2016-06-17 Lu Huang 更多博文 » 博客 » GitHub »

Python OpenCV

原文链接 https://hlthu.github.io/opencv/2016/06/17/python-opencv-f.html
注:以下为加速网络访问所做的原文缓存,经过重新格式化,可能存在格式方面的问题,或偶有遗漏信息,请以原文为准。


本节实现的是使用OpenCV里自带的函数,对图像进行简单的几何变换。

  • 放大
  • 缩小
  • 平移
  • 旋转

实现过程

读取原图并显示

不再赘述。

import cv2
import numpy as np

# read the original
img = cv2.imread('../test2.jpg')
cv2.imshow('original', img)

放大

利用OpenCV自带的resize()函数实现放大与缩小。其声明为:

cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst

其中各个参数的意义如下:

  • src – input image.
  • dst – output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src.
  • dsize –output image size; if it equals zero, it is computed as: dsize = Size(round(fx × src.cols), round(fy × src.rows))
  • fx –scale factor along the horizontal axis; when it equals 0, it is computed as
  • fy –scale factor along the vertical axis; when it equals 0, it is computed as
  • interpolation –interpolation method:
参数 意义
INTER_NEAREST a nearest-neighbor interpolation
INTER_LINEAR a bilinear interpolation (used by default)
INTER_AREA resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
INTER_CUBIC a bicubic interpolation over 4x4 pixel neighborhood
INTER_LANCZOS4 a Lanczos interpolation over 8x8 pixel neighborhood

本文将原图放大至原来的2倍。

# expand
rows, cols, channels = img.shape
img_ex = cv2.resize(img, (2*cols, 2*rows), interpolation=cv2.INTER_CUBIC)
cv2.imshow('expand', img_ex)

缩小

这里将原图缩小为原来的一半。

# zoom
img_zo = cv2.resize(img, (cols/2, rows/2), interpolation=cv2.INTER_AREA)
cv2.imshow('zoom', img_zo)

平移

平移可以由平移矩阵描述:

$$\begin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \end{bmatrix} \tag{1} $$

其中$$t_x$$和$$t_y$$分别为向右和向下平移的距离。这里我们利用np.array()创建这个矩阵,然后调用warpAffine来实现这个变换,并保持图像的大小不变。

# trans
M = np.array([[1, 0, 50],[0, 1, 50]], np.float32)
img_tr =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('trans', img_tr)

其中warpAffine()的声明如下:

cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) → dst

各个参数的意义如下:

  • src – input image.
  • dst – output image that has the size dsize and the same type as src .
  • M – 2 × 3 transformation matrix.
  • dsize – size of the output image.
  • flags – combination of interpolation methods (see resize() ) and the optional flag WARP_INVERSE_MAP that means that M is the inverse transformation.
  • borderMode – pixel extrapolation method (see borderInterpolate()); when borderMode=BORDER_TRANSPARENT , it means that the pixels in the destination image corresponding to the “outliers” in the source image are not modified by the function.
  • borderValue – value used in case of a constant border; by default, it is 0.

旋转

利用getRotationMatrix2D()获得旋转矩阵,其声明为

cv2.getRotationMatrix2D(center, angle, scale) → retval

各个参数的意义:

  • center – Center of the rotation in the source image.
  • angle – Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).
  • scale – Isotropic scale factor.
  • retval – The output affine transformation, 2x3 floating-point matrix.

然后再利用warpAffine()函数进行变换。

# Rotation
M=cv2.getRotationMatrix2D((cols/2,rows/2), 45, 1)
img_ro =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('rotation', img_ro)

源代码

程序的源代码如下:

# created by Huang Lu
# 2016/8/26 17:35
# Department of EE, Tsinghua Univ.

import cv2
import numpy as np

# read the original
img = cv2.imread('../test2.jpg')
cv2.imshow('original', img)

# expand
rows, cols, channels = img.shape
img_ex = cv2.resize(img, (2*cols, 2*rows), interpolation=cv2.INTER_CUBIC)
cv2.imshow('expand', img_ex)

# zoom
img_zo = cv2.resize(img, (cols/2, rows/2), interpolation=cv2.INTER_AREA)
cv2.imshow('zoom', img_zo)

# trans
M = np.array([[1, 0, 50],[0, 1, 50]], np.float32)
img_tr =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('trans', img_tr)

# Rotation
M=cv2.getRotationMatrix2D((cols/2,rows/2), 45, 1)
img_ro =cv2.warpAffine(img, M, img.shape[:2])
cv2.imshow('rotation', img_ro)

# wait the key and close windows
cv2.waitKey(0)
cv2.destroyAllWindows()

也可以参考我的GitHub上的,点击这里

运行结果

在命令行进入该源程序所在目录后,运行python main.py后即可显示结果。显示结果如下:

结果

参考

  • http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html
  • OpenCV-Python-Toturial-中文版.pdf
  • https://github.com/hlthu/Python-OpenCV-Learn/tree/master/Geometric_Trans/