Smith Numbers
原文链接 http://huiming.io/2013/06/23/smith-numbers.html
注:以下为加速网络访问所做的原文缓存,经过重新格式化,可能存在格式方面的问题,或偶有遗漏信息,请以原文为准。
分析:分解质因数,求各位数字之和。如果担心当n等于10亿时,Smith数的计算会使unsigned int溢出,可以先试算一下——其实不小于10亿的最小Smith数是1000000165,不算大。<!--more-->
#include <iostream>
#include <vector>
#include <cmath>
#include <climits>
using namespace std;
typedef unsigned int uint;
//For a prime number, the return value is empty.
inline vector<uint> prime_factors(uint n) {
vector<uint> f;
if (n > 2) {
uint o = n;
f.reserve(8);
while (n % 2 == 0) {
f.push_back(2);
n /= 2;
}
uint p = 3;
double rt = sqrt(n);
while (p < rt + 1) {
if (n % p == 0) {
f.push_back(p);
n /= p;
while (n % p == 0) {
f.push_back(p);
n /= p;
}
rt = sqrt(n);
}
p += 2;
}
if (n > 1 && o != n)
f.push_back(n);
}
return f;
}
inline uint sum_of_digits(uint n) {
uint s = 0;
while (n) {
s += n % 10;
n /= 10;
}
return s;
}
inline bool is_smith(uint n) {
bool r = false;
vector<uint> f = prime_factors(n);
if (!f.empty()) {
uint sf = 0;
for (uint i = 0; i < f.size(); i++) {
sf += sum_of_digits(f[i]);
}
r = sum_of_digits(n) == sf;
}
return r;
}
inline uint smith(uint n) {
uint i = n + 1;
for (; i < UINT_MAX; i++) {
if (is_smith(i))
break;
}
return i < INT_MAX ? i : 0;
}
int main() {
uint t;
cin >> t;
for (uint i = 0; i < t; i++) {
uint n;
cin >> n;
cout << smith(n) << endl;
}
return 0;
}