RMQ(二进制方法)
原文链接 https://hsfzxjy.github.io/2014-11-02-RMQ-binary/
注:以下为加速网络访问所做的原文缓存,经过重新格式化,可能存在格式方面的问题,或偶有遗漏信息,请以原文为准。
问题描述:已知数组a以及若干个查询(x, y),求a[x~y]之间的最小值。
分析
不难发现:若取t使得$2^t\leq y-x+1$且$2^{t+1}>y-x+1$,则有: $$[x, x+t]\bigcup[y-t+1,y]=[x,y]$$ 运用二进制的思想,我们只需预处理出$i~i+2^k-1$之间的最小值,即可快速完成查询。设dp[i][j]为$i~i+2^j-1$之间的最小值,则有: $$dp[i][j]=min(dp[i][j-1],dp[i+2^{j-1}][j-1])$$。
Code
var
a: array [1..100000] of longint;
dp: array [1..100000, 0..20] of longint;
n, i: longint;
function min(x, y: longint): longint;
begin
if x < y then exit(x) else exit(y);
end;
procedure init;
var
i, j: longint;
begin
for i := 1 to n do dp[i, 0] := a[i];
j := 1;
while 1<<j-1<=n do
begin
for i := 1 to n-1<<(j-1) do
dp[i, j] := min(dp[i, j-1], dp[i+1<<(j-1), j-1]);
inc(j);
end;
end;
function query(x, y: longint): longint;
var
t: longint;
begin
t := 0;
while (1<<(t+1)<=y-x+1) do inc(t);
query := min(dp[x][t], dp[y-(1<<t)+1][t]);
end;
var
x, y: longint;
begin
assign(input, 'main.in'); reset(input);
assign(output, 'main.out'); rewrite(output);
readln(n);
for i := 1 to n do read(a[i]);
init;
while not eof do
begin
read(x, y);
writeln(query(X, y));
end;
close(input); close(output);
end.