UVa1647 Computer Transformation
原文链接 https://hsfzxjy.github.io/2014-10-24-uva1647-computer-transformation/
注:以下为加速网络访问所做的原文缓存,经过重新格式化,可能存在格式方面的问题,或偶有遗漏信息,请以原文为准。
链接:Link 耗时:0.679s
分析
本质上,这是一道求数列通项的题目。我们列出前几个字符串: $$01,$$ $$1001,$$ $$01101001,$$ $$1001011001101001,$$ $$\ldots$$ 如果用$S_i$表示第i个字符串中“00”的个数,则有: $$S_1=0,\ S_2=1,\ S_3=1,\ S_4=3,\ S_5=5,\ S_6=11,\ldots$$ 经过观察可以发现有如下规律: $$S_n=2\times S_{n-1}+{(-1)}^n$$ 求通项就简单了,换个元即可: $$S_n=\frac{1}{3}[{(-1)}^n+2^{n-1}]$$ 程序采用高精度实现。
Code
const
JINDU = 100000;
var
n: Integer;
//在数字前补0
procedure PrintANumber(x: longint);
var
t: longint;
begin
if x = 0 then
write('00000')
else
begin
t := JINDU;
while t > x * 10 do
begin
write(0);
t := t div 10;
end;
write(x);
end;
end;
var
ans: array [1..300] of longint;
len, i: integer;
//计算2^(n-1)
procedure calc2;
var
i, x, t, mul: longint;
begin
len := 1;
ans[1] := 1;
t := n-1;
while t > 0 do
begin
if t < 6 then
mul := 1 << t
else
mul := 64;
x := 0;
for i := 1 to len do
begin
ans[i] := ans[i] * mul + x;
x := ans[i] div JINDU;
ans[i] := ans[i] mod JINDU;
end;
if x > 0 then
begin
inc(len);
ans[len] := x;
end;
dec(t, 6);
end;
end;
//除以3
procedure div3;
var
i, x, t: longint;
begin
i := len;
x := 0;
while i > 0 do
begin
t := (x * JINDU + ans[i]);
ans[i] := t div 3;
x := t mod 3;
dec(i);
end;
while ans[len] = 0 do dec(len);
end;
begin
assign(input, 'main.in'); reset(input);
assign(output, 'main.out'); rewrite(output);
while not eof do
begin
readln(n);
if n=1 then //特殊情况处理
begin
writeln(0);
continue;
end;
fillchar(ans, sizeof(ans), 0);
calc2;
if odd(n) then
dec(ans[1])
else
inc(ans[1]);
div3;
write(ans[len]);
for i := len-1 downto 1 do
PrintANumber(ans[i]);
writeln;
end;
close(input); close(output);
end.